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Are these residuals just noise? 
Malcolm Hooper, retired from Normanhurst Boys High School 

Background. I am not a statistician. I needed a statistical test to answer the title question. Having 
searched widely and unsuccessfully, I attempted the maths myself. Is this work valid? 
Statistical fitting minimises the sum of squares of the residuals; I like using R2=1–SN–P/SN. I 
recently obtained Wolberg’s 2006 textbook, after waiting several months for it. I had derived a 
result two different ways before finding and then understanding the test in Wolberg, section 3.3; the 
F distribution on [0, ¥] transforms into mine using R2 on [0, 1].  

1. Adding just one parameter; my first approach. 
I visualized the residuals as defining a point on the unit sphere of N–P dimensions where P 
parameters have been used to fit N points. The N–P dimensional space of the residuals is orthogonal 
to the fitting function. Adding one more parameter is equivalent to looking at fraction of the surface 
in the equatorial band from –R to +R on the unit n-sphere. The probability distribution function was  
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. Monte-Carlo simulations supported this result. Multiple 

integrations could extend this result to multiple parameters, but it would get messy. 

2. Re-imagining the problem; my second approach. Is this valid? 
Suppose we are fitting m parameters simultaneously and n-m=N-P-m (usually many) other 
directions remain in the space of the residuals. The observables are the sum of squares of residuals 
before the extra parameters are added as 𝑆# = 𝑆, + 𝑆#), and after the extra parameters are added 
as 𝑆#),. The difference is 𝑆, and 𝑅$ = -&

-!
= 1 − -!$&

-!
 hence 𝑆, = 𝑆#),

*"

(!)*")
= 𝑆#),𝜉. 

Correlation is included and the domain of 𝑅$ is [0, 1]. 

Working in units where 𝜎 = 1, pure noise should give the sums of squares of residuals as 𝜒$ 
distributions. Figure 1 imagines the combined probability distribution function PDF as the 𝜒,$  
distribution in the y direction multiplied by the 𝜒#),$  distribution in the x direction. The PDF for 
𝑅$ is found by integrating along a line of slope 𝜉 = 𝑅$/(1 − 𝑅$). We need to weight the integral 
properly for 𝑑𝑅$. 	
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Figure 1. As the slope changes from 0 to ¥, the line 
sweeps out the CDF with 𝑆' and 𝑆()' correlated.  

 

As 𝜉 changes by 𝑑𝜉 , it sweeps out the 𝑦 values 
as 𝑑𝑦 = 𝑥 ∙ 𝑑𝜉.  
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For m=1, as found previously, 𝑃𝐷𝐹!,#(𝑅$) =
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The cumulative distribution function CDF is found in Lide, 2003, A-36, Eqns 268 & 265. For odd 
values of 𝑛, the CDF is found by taking the expression below to sufficient terms, where the last 
denominator is 𝑛 − 1. Substitute 𝑧 = 1 − 𝑅$ to simplify. 
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For even values of 𝑛, the CDF is evaluated similarly. The last denominator is 𝑛 − 1. 
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Figures 2a and 2b show these CDFs and PDFs for 𝑛 in the range 2 to 21. 

 
Figure 2a. CDF1,n functions for m=1 and n from 2 to 21. Even values on n are shown as dotted lines; odd 
values as solid lines. Cut-off values at y=0.95 and y=0.975 are shown. These values and more have been 
collected into Table 3 in the appendix. Low cutoff values are uninformative.  
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Figure 2b. PDF1,n functions for m=1 with n from 2 to 21. The even values of n are shown as dotted lines; odd 
values as solid lines. 
For m=2, we have 𝑃𝐷𝐹$,#(𝑅$) =

(#)$)
$

𝑧(#)7)/$  and  𝐶𝐷𝐹$,#(𝑅$) = 1 − 𝑧(#)$)/$ 

For n = 4, the distribution is uniform on [0, 1]. A chi-squared goodness-of-fit test using 105 trials 
supported this.  

The right tail is calculated as  𝑝 = 𝑧(#)$)/$ thus 𝑅=>?@,$,#$ = 1 − 𝑝$/(#)$). Many situations add two 
parameters, particularly paired sine and cosine functions. Is this short expression new or useful? 
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The probability for the right tail is a known form (Lide, 2003, A-27, Eqn 127) but I have no urgent 
need to calculate it exactly.  

For m=4, 𝑃𝐷𝐹7,#(𝑅$) =
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For the right tail, 𝑝 = 1 − 𝐶𝐷𝐹 = =#
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More generally, the mean of the PDF is  ∫ 𝑥. 𝑃𝐷𝐹,,#(𝑥). 𝑑𝑥
!
1 = ,

#
, which agrees with symmetry. 

Gauss-Jacobi quadrature estimates of the right tail well, especially when p is small and m is even. 

3. Transforming from the F-test defined on [1, ¥]  

Wolberg’s equation 3.3.6, in my notation, is  -!
-!$&

= 1 + ,
#
𝐹(𝛼,𝑚, 𝑛)  and  R2=1–-!$&

-!
.  

I have checked the m=1 and m=2 values for CDF= 0.90, 0.95, 0.99, and 0.999 for many values of n. 
The agreement is excellent. In the limit of large n and a given 𝛼 , the values of R2/n approach a 
constant value given by the c2 distribution, as expected. 
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4. Applying these results. 
The title question arose while teaching physics to high school students, provoked by two 
experiments. First, many oscillations of a pendulum were timed in a continuous run to determine 
the period more accurately. A linear plot was expected for elapsed time versus counted oscillations, 
but the string may have stretched slowly under load, giving quadratic and higher terms. Are the 
quadratic terms observed in Figure 3 significant? Second, the height of each ring of a freely 
hanging slinky was measured from bottom to top. The intention was to practise using larger data 
sets and fit to other than a straight line. Hooke’s law predicts a parabolic plot for distance against 
number of rings. Higher order terms occur; are they significant?  
Sets of orthogonal polynomials arise naturally in the stepwise analysis of the residuals, as seen in 
the parabolas in Figure 3. With N points, a polynomial of order N–1 fits perfectly. After fitting the 
pendulum data to a line, the low order terms are absent from the residual space.  

 
Figure 3. Residuals from timing a pendulum, by four students. Each data set fitted well to a line, with R2 = 
0.99999993, 0.99999964, 0.99999969, & 0.99999974. After projecting out the good fit, we have ∑ 𝑅*+,)-

*.+ = 1 
for the residuals. This equation defines a unit spherical surface in a space of N–2 dimensions. The constant 
(i	=	0) and linear (i	=	1) terms are orthogonal to these residuals, so not part of this space. 

After linear fitting for 21 points, we have m=1 and n–m=18. A p-value of 0.025 has R2 = 0.2493. 
All four student results are below this and support the null hypothesis. These residuals are just 
noise; the pendulum string is not stretching under load. Many other student data sets agree, as do 
the parabolas curving both up and down. 
The slinky result was more interesting. For the quadratic fit, R2 = 0.9999925. Figure 4a plots the 
residuals and shows an obvious pattern, close to a scaled and shifted Legendre cubic. The equation 
appears to have four parameters, but the constant, linear and quadratic terms are all orthogonal to 
these residuals; this is a one parameter fit. For n–m=48 and R2 = 0.8525, p = 1.4×10–21; this signal is 
real. I think I can estimate or explain this term; it’s engineering, the bottom of the slinky rotates. 
Figure 4b shows the residuals after removing the cubic; no visible pattern is obvious. The raw data 
were recorded to the nearest half millimeter. The quartic polynomial lies entirely within this limit. 
This signal might be real; p = 0.012. Three more trials (with more points) produced quartic results 
of the same sign and similar magnitude. Round-off error, assuming a uniform distribution and thus 

R² = 0.0411 R² = 0.0378 R² = 0.1055 R² = 0.0038-0.4
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calculated as S{(0.5 mm)2/12), accounts for 74% of the sum of residuals squared. Polynomials of 
orders five and six were consistent with noise. 

 
Figure 4a. Residuals from the quadratic fit to the freely hanging slinky. This pattern is obviously “not noise”. 

 
Figure 4b. Residuals from the cubic fit to the freely hanging slinky.  

Another example: climate data 
The Bureau of Meteorology website gave average annual rainfall and temperature data for several 
airports near Australian state capitals and some islands. These data were plotted against year and 
straight lines were fitted. R2 measures the linear term after removing the average. This test is more 
sensitive than a t-test comparing the first and second halves of the data, which I had done before. 
For all maximum temperatures and most minimum average annual temperatures, the results 
indicated highly significant warming trends. Their cause may be argued but their existence is clear. 
Islands were included to counter any “urban heat island” argument.  
Most rainfall data are much noisier; significant trends were not found. Perth is drying; Macquarie 
Island near Antarctica is getting wetter.  
Further calculations examined linear trends using monthly data; finer patterns were discerned. 
Perth’s rainfall is winter dominant, mainly in June; the decrease of June rainfall was highly 

y = -0.000244x3 + 0.021558x2 - 0.537238x + 3.341446
R² = 0.852510  ;  p = 1.4×10-21
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significant (p = 4.5×10–6). Sydney’s minimum and maximum temperatures rose significantly for 
every month while rainfall changes were not significant for any month. 

  Ann. Rain (mm) Min. Temp. (˚C) Max. Temp. (˚C) 

Location BoM # R2 p R2 p R2 p 
Darwin 014015 0.06134 0.0249 0.07252 0.0157 0.39985 3.1E-10 
Brisbane (Amberley) 040004 0.01873 noise 0.07116 0.0175 0.26437 1.3E-06 
Sydney 066037 0.00177 noise 0.76745 2.2E-27 0.56285 3.2E-16 
Melbourne (Laverton) 087031 0.07657 0.0130 0.44193 2.4E-11 0.32549 4.0E-08 
Hobart 094008 0.05558 noise 0.49027 1.3E-10 0.37697 7.6E-08 
Adelaide 023034 0.02131 noise 0.58595 5.0E-14 0.32231 5.9E-07 
Perth 009021 0.22150 1.4E-05 0.28836 4.0E-07 0.44865 2.0E-11 
Alice Springs 015590 0.01037 noise 0.00633 noise 0.33634 1.3E-05 
Norfolk Island 200288 0.08415 7.4E-04 0.40600 9.2E-11 0.28433 2.1E-07 
Macquarie Island 300004 0.35797 4.8E-08 0.21811 3.2E-05 0.28237 1.4E-06 

Table 2. Analysis of climate data to 2021 for several sites around Australia, with their Bureau of Meteorology 
site numbers, where data for 60 to 80 years were available. No such data set near Canberra was found. The 
long baselines should reduce the effect of decadal cycles such as ENSO, the Indian Ocean dipole, and the 
11-year solar oscillation. The R2 values are for a linear fit.  

When quadratic trends of the average annual temperatures were examined, the R2 values were 
usually small, indicating just noise. At Sydney Airport, the rate of warming is increasing; for 
maximum temperatures p = 0.0009 and for minimum temperatures p = 0.0011. Calculations for 
Sydney Airport using monthly data for maximum and minimum temperatures had the parabolas 
concave up, but some terms were negligibly small. 
Summary. 
Statistical testing supplements rather than replaces plotting the residuals. My approach to the 
problem appears to be equivalent to using an F-test, but is a different way of seeing the problem.  
The noise due to measuring and rounding data is a second constraint to consider when asking “are 
these residuals just noise?” 
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