Menu
Log in


CPD 191-Machine Learning II

  • 14 Oct 2025
  • 2 Dec 2025
  • Online- Weekly 1 hour meetings taking place Tuesday
  • 15

Registration

  • If you register for or have taken Intro to Big Data in the past, you qualify for this discount
  • If you register for or have taken Intro to Big Data in the past, you qualify for this discount

Register

The Social Research Centre and the Statistical Society of Australia (SSA) are very proud to offer statistical training from the International Program in Survey and Data Science (IPSDS), a joint program of the University of Mannheim and the Joint Program in Survey Methodology at the University of Maryland.

Places are limitedplease register early to take advantage of early bird discounts and secure a place.

 Topics:

 1. Intro: Bias-variance trade-off, cross-validation (stratified splits, temporal cv) and model tuning (grid and random search)

2. Classification: Performance metrics (ROC, PR curves, precision at K) and class imbalance (over- and undersampling, SMOTE)

3. Ensemble methods I: Bagging and Extra-Trees

4. Ensemble methods II: Boosting (Adaboost, GBM, XGBoost) and Stacking

5. Variable selection: Lasso, elastic net and fuzzy/ recursive random forests

6. Support Vector Machines

7. Advanced unsupervised learning: Hierarchical clustering and LDA

8.  Interpreting (Variable Importance, PDP, ...) and reporting ML results

Timeframe:

October 14 – December 2, 2025. Tentative Weekly Meetings as follows (exact dates and times TBC):

▪ Week 1: Tuesday, October 14, 9:00 – 10:00 am AEDT

▪ Week 2: Tuesday, October 21, 6:00 – 7:00 pm AEDT

▪ Week 3: Tuesday, October 28, 6:00 – 7:00 pm AEDT

▪ Week 4: Tuesday, November 4, 6:00 – 7:00 pm AEDT

▪ Week 5: Tuesday November 11, 11:00 am – 12:00 pm AEDT

▪ Week 6: Tuesday November 18, 11:00 am – 12:00 pm AEDT

▪ Week 7: Tuesday, November 25, 11:00 am – 12:00 pm AEDT

▪ Week 8: Tuesday, December 2, 9:00 – 10:00 am AEDT


Course Objectives

 By the end of the course, participants will… ▪ have a profound understanding of advanced (ensemble) prediction methods ▪ have built up a comprehensive MLtoolkit to tackle various learning problems ▪ know how to(critically) evaluate and interpret results from ''black-box'' models


Your instructor: Prof. Trent Buskirk 

Current positions:

▪ Novak Family Professor of Data Science and Chair of the Applied Statistics and Operations Research Department at Bowling Green State University

▪ Adjunct Research Professor at the University of Michigan

Dr. Buskirk is a Fellow of the American Statistical Association. His research includes the areas of Mobile and Smartphone Survey Designs, methods for calibrating and weighting nonprobability samples, and the use of big data and machine learning methods for health, social and survey science design and analysis. His research has been published in leading journals such as Cancer, Social Science Computer Review, Journal of Official Statistics, and the Journal of Survey Statistics and Methodology.

Your instructor: Prof. Christoph Kern

Christoph Kern is Junior Professor of Social Data Science and Statistical Learning at the Ludwig-Maximilians-University of Munich and Project Director at the Mannheim Centre for European Social Research (MZES). He received his PhD in social science (Dr. rer. pol.) from the University of Duisburg-Essen in 2016. Before joining LMU Munich, he was a Post-Doctoral Researcher at the Professorship for Statistics and Methodology at the University of Mannheim and Research Assistant Professor at the Joint Program in Survey Methodology (JPSM) at the University of Maryland. His work focuses on the reliable use of machine learning methods and new data sources in social science, survey research, and algorithmic fairness

Prerequisites

Topics covered in Introduction to Machine Learning and Big Data (ML I), i.e.:

▪ Conceptual basics of machine learning (training vs. test data, model evaluation basics)

▪ Decision trees with CART

▪ Random forests

Familiarity with the statistical programming language R is strongly recommended. Participants are encouraged to work through one or more R tutorials prior to the first-class meeting.

Some resources can be found here:

▪ https ://rstudio.cloud/learn/primers

▪ http ://www.statmethods.net/

▪ https ://swirlstats.com/ ▪ https ://www.rcommander.com


 Grading will be based on:

 

 ▪ 4 homework assignments (10% each)

▪ 8 online quizzes (5% each)

▪ Participation in discussion during the weekly online meetings (20% of grade)

Early Bird Deadline
Please book before 15 August 2025 to take advantage of the Early Bird Deadline.

Prices include GST. There is also a discount of $150 for Machine Learning II if registering at the same time as Introduction to Big Data & Machine Learning or have completed Introduction to Big Data & Machine Learning in the past.

Disclaimer

Participants will receive access data for the online course, in particular to any learning platform that may be used. The rights of use connected to the access data are personally assigned to the participant. Passing on the access data is not allowed. Also, the temporary transfer to third parties is not permitted.
The right to use the transmitted access data, in particular with regard to any materials or video recordings provided, can only be exercised up to a maximum of 2 months after the program end. After expiration of this 2-months period, the access data will be deleted by Mannheim Business School (MBS). Before the expiration of this period, the participant may view the respective recorded course as often as desired and without time restriction.
If we have reasons to believe that the participant is abusing the right of use granted to him or that there is a violation of the terms of use, MBS reserves the right to change the participant’s access data as well as to partially or completely block the access or to prohibit the further use of the digital content.

Group bookings

For group bookings, please email events@statsoc.org.au with the names, email addresses, and telephone numbers  of the participants in the group.

Cancellation Policy
Occasionally courses have to be cancelled due to a lack of subscription. Early registration ensures that this will not happen.

Cancellations received prior to two weeks before the event will be refunded, 
minus the  Stripe processing fee (1.75% + $0.30 per transaction) and an SSA administration fee of $20. 

From then onward no part of the registration fee will be refunded. However, registrations are transferable within the same organisation. Please advise any changes to events@statsoc.org.au.

For any questions, please email events@statsoc.org.au

Powered by Wild Apricot Membership Software